Photoautotrophic-heterotrophic biofilm communities: a laboratory incubator designed for growing axenic diatoms and bacteria in defined mixed-species biofilms.

نویسندگان

  • Matthias Buhmann
  • Peter G Kroth
  • David Schleheck
چکیده

Biofilm communities in the euphotic zone of aquatic habitats comprise photoautotrophic microorganisms, such as diatoms, green algae and cyanobacteria, which produce the organic carbon that fuels the life of a heterotrophic contingent of microorganisms, mostly bacteria. Such photoautotrophic-heterotrophic mixed-species biofilms have received little attention in biofilm research due to a lack of suitable pure-culture laboratory model systems. However, they offer important insight into microbial population dynamics and community interactions during a biofilm-developmental process that shapes highly structured, extremely well-adapted microbial landscapes. Here, we report on the development of a sterile incubation chamber for growing and monitoring axenic phototrophic biofilms, i.e. a sterilizable, illuminated, continuous-flow system for a routine work with pure cultures. The system has been designed to simulate the growth conditions in the shallow, littoral zone of aquatic habitats (horizontal surface, submerged in water, illuminated, aerated). Additional features of the concept include automated photometrical monitoring of biofilm density (as biofilm turbidity), analysis via confocal microscopy, direct harvesting of cells, and options to control illumination, flow velocity, and composition of culture fluid. The application of the system was demonstrated in growth experiments using axenic diatom biofilms, or axenic diatom biofilms co-cultivated with different bacterial strains isolated from epilithic biofilms of an oligotrophic freshwater lake.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biofilm and capsule formation of the diatom Achnanthidium minutissimum are affected by a bacterium.

Photoautotrophic biofilms play an important role in various aquatic habitats and are composed of prokaryotic and/or eukaryotic organisms embedded in extracellular polymeric substances (EPS). We have isolated diatoms as well as bacteria from freshwater biofilms to study organismal interactions between representative isolates. We found that bacteria have a strong impact on the biofilm formation o...

متن کامل

The Stabilisation Potential of Individual and Mixed Assemblages of Natural Bacteria and Microalgae

It is recognized that microorganisms inhabiting natural sediments significantly mediate the erosive response of the bed ("ecosystem engineers") through the secretion of naturally adhesive organic material (EPS: extracellular polymeric substances). However, little is known about the individual engineering capability of the main biofilm components (heterotrophic bacteria and autotrophic microalga...

متن کامل

The effect of carbon subsidies on marine planktonic niche partitioning and recruitment during biofilm assembly

The influence of resource availability on planktonic and biofilm microbial community membership is poorly understood. Heterotrophic bacteria derive some to all of their organic carbon (C) from photoautotrophs while simultaneously competing with photoautotrophs for inorganic nutrients such as phosphorus (P) or nitrogen (N). Therefore, C inputs have the potential to shift the competitive balance ...

متن کامل

Effects of biofilm formation in bacteria from different perspectives

Bacterial communities are able to form complex and three-dimensional biofilm structures. Biofilm formation is an ancient and integral component of the prokaryotic life cycle and a key factor for survival in diverse niches. In biofilms, bacterial lifestyle changes from free-floating cells to sessile cells. Presence in biofilms gives new traits to bacteria, which distinguish them from free cells....

متن کامل

The effect of bacteria on the sensitivity of microalgae to copper in laboratory bioassays.

Although single-species laboratory toxicity tests with microalgae are sensitive and highly reproducible, they lack environmental realism. Interactions between algae and their associated bacteria, either in the plankton or in biofilms, may alter algal sensitivity to contaminants, which are not mimicked in laboratory toxicity tests. This study investigated the effects of simple algal-bacterial re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental microbiology reports

دوره 4 1  شماره 

صفحات  -

تاریخ انتشار 2012